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Bright stationary solitary waves in deep gratings with a quadratic nonlinearity
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We present localized, bright, stationary soliton solutions to the coupled-mode equations for quadratically
nonlinear media with @eepgrating. We find that the required peak intensities can be significantly lower than
might be expected from a shallow grating treatment.
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Periodic Kerr media are well known to support Bragg
solitons, which maintain their shape through the balance of
the grating’s group velocity dispersion and the Kerr nonlin-

+T0E7 &+ T8 & +T3E] E-=0,

o Y
earity [1]. It is also well known that in second harmonic +i&, +;€2++5k€2++;<252_+1“’1‘€f+
generationNSHG), the up and down conversion between the g
fundamental frequencyFF) and the second harmonic fre- +F2€§,+2F§81+51,=0, D

guency(SHP), can lead to a nonlinear phase shift somewhat

similar to that in Kerr media, but potentially much larger where £. are the envelopes associated with forward and

[2.3]. (_Jne_ would thus expecy_ media W'th_ a periodic backward propagation, and the prim§ (ndicates differen-
refractive index to support solutions that are similar to Braggiation with respect to the propagation directianAs dis-

solitons. Indeed, this was confirmed theoretical§-9]. . ssed below, the evolution equations for e are not

Here we theoretically investigate such solitons further, With'required here. The positive, real constaris are grating

out makir_lg the usual assumption that the grating is a Wealfoupling constantsy g are the group velocitiessk=k;

perturbation. —2k,, where thek,, are the wave numbers at the FF and the
The usual starting point for studies of gratings with asHE, and the complex nonlinear coefficiehts 5 are known

quadratic nonlinearity is a set of four coupled-mode equafiq).

tions (CMEs). For shallow gratings, these are well estab- The dispersion relation in Fig. 1 is obtained by substitut-

lished and many solutions are knoys—9]. The CMEs for  ing trial plane wave solutions into the linear part of E(9,

deep gratings are also known and include additional nonlintaking v,q=v,q=v4 (see below. The first band gagleft-

ear termdq 10], though their solutions were only considered hand sid¢ is centered aty=0, while the second band gap

in limiting cases[5,6]. In this paper we present stationary (right-hand sidg is centered aty=—v46k/2. In the linear

soliton solutions fory(® media with a deep grating. We limit, an envelope,,- (z) tuned to a frequency within a band

compare the results to those for shallow gratif@s9], and  gap is evanescent, while otherwise it is oscillatory.

show that the peak intensities according to the deep grating

treatment can be significantly lower than might be expected

from the usual method.

/ +2 (16,~0K) —
e, - -
Il. COUPLED-MODE EQUATIONS 1
;>°° 6—%{ —% (1c,+0Kk)
We consider scalar type | SHG in which the FFagg ™~ 0 ———

+ v, wherew,,is the center of the first grating-induced band o~ Yo o\
gap. Through the(® nonlinearity, this field generates the —K, — Ve
SHF near the center of the second band @ag because of
dispersion,w,g— 2w+ 0. Here and below, the subscript

m=1,2, refers to the FF and the SHF or the first and the

second band gaps. We restrict ourselves to envelopes varying

harmonically in time. According to Arraf and de SterfKeD] -
these obey Q

FIG. 1. Schematic of the dispersion relation showing the local
*Electronic address: a.arraf@physics.usyd.edu.au detuningy/vg versus the local wave numbex
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Equations(1) apply to arbitrary periodic refractive index. 0,= +v2K,_ /Na cosh az), (9
Henceforth however, we consider refractive indices that are
symmetric around the center of each period. Tf®in Eqs.  where
(1) are then either rediregime ) or imaginary(regime 1)

but never comple;ﬁlq]. . . N= s, K2_ cost(az)+ 20K Ki_
In the stationary limit that we consider hefg_ =&, , _ .
and so only two of Eqs(1) are required. Rather, by writing X costf(az)sintf(az) + K7, sintf(az) (10)

[9] £+ (2)= VM2 pm(2) Fidm(2)], wherep,, and q,, are _ "
real, they reduce to four real equations. This leads to &vith a=(K1,K;_)"*and wheresk>0. For sk<0 the hy-

Hamiltonian system, which in regime | reads perbolic sine and cosine functions interchange.
A1 =K1+ P1+ @1 P1P2+ ©ol102, Ill. RESULTS
p;=Ki_01+ ©_q1P2— ©oP10>, The shallow grating CMEs have two types of bright solu-

?) f[ior?s[6,7,_14]._ In the first, both the F_F and_the SHF are tuned
o1, ¢ |nS|d_e thelr Ime_ar band gapfree tail solutiond14]). In the
- Pi—5aL low-intensity wings, therefore, the free envelopes are evanes-
cent. In the second, the SHF is outside its band (agked
, tail solutions[14]). Though the free linear SHF solutions are
P2=Kz-02~ ¢oP1ds, thus propagating, the SHF—FF coupling forces the SHF field
to decay in the wings.
Free tail and locked tail solutions differ in applying initial
0o=T1-T5, @.=T1+T,+2T5, (3) conditions[6—9]. We start integrating in one of the soliton
- wings, on a small hypersphere of radiys.e.,

dr=Kopot

where theg, . are combinations of th&; 3

and whereK,.. are given by
pi+ai+2(pi+ad)=r?, (12)

Y 2y

KlizKli_, K2:=K2i ok+ —

Ulg ng

: 4)  where analytic expressions can be found. For locked tail so-
lutions, the initial conditions are now specified by requiring
Results for regime Il are similar. Henceforth we tak% that the soliton decays in the other Wil’lg. However, for free
=vy=vg4. Note that for GaAs at a fundamental Wavelengtht_ﬁl" soluti_ons, one of_ the initial gonditions is as yet unspeci-
of 1.6 um, v,4/v14=0.92, while for AlAs,v,,/v,,=0.93 fied and is found using a shooting method.
[12], so this is a good approximation. The nonlinear parameters used apply to a GaAs—AlAs
Equations(2) can be solved analytically in the cascading Stack. For wavelengthag=1.6 um and Asp=0.8 um,
limit when the dispersion is large, i.d9k|>«,, [4,6]. The the refractive indices aren;gaas=3.37, Niaas=2.88,
conversion from the FF into the SHF is then inefficient andN2caas=3.67, and nyaas=3.04 [12]. Following Miller’s
p1(2),01(2)>p2(2),G2(2). In the last two of Eqs(2) the sk rule, we take they(® ratio between AlAs and GaAs to be
term [in the K.. in Egs. (4)] and the nonlinear terms now 0.33 [15]. We usedgaas/d=0.19, wheredgaps/d is the
dominate, and thup,=— (¢, p>—e_q?)/(25k) and q, GaAs fraction of the period. Treating this grating as if it was
= — goP10, /5K, so that the SHF is slaved by the FF. Sub-Shallow, the Bloch functions are simple trigonometric func-

stituting into the first two of Eqs(2) we find tions which, using the definitions of thi’'s [10], leads to
I',=T3;=0, and onIyF1=F§h¢0. The full deep grating
A =K1+ P1— @54 P3— @002P1 treatment requires the exact Bloch functiofig], corre-
(5) qundipg toa Fou.rier series, an_d which exhibit discorjtinuous
PI=K;_ Q1+ @s 03+ 0sodrp?, derivatives at the interfaces. Using these Bloch functions, we
then similarly find I';=0.843", T',=0.19", and I';
where =0.17'5". Below we use units in whicli'$'=1. We note
that for dgaas/d=0.19 the difference between the shallow
P =3 1(20K), (6)  and deep grating treatments are the most pronounced.
Though the nonlinear coefficients apply to GaAlAs, the
©s0=(205— @ ©_)(25K). (7)  linear coefficients are independent of this geometry. We first

takevyx1=1.0,v4x,=0.5, andy,=—0.% 4, so that the FF
Equations(5) are similar to those of de Sterlat al. [11], lies just above the bottom edge of the band ¢=g® Fig. L
who considered deep gratings with a Kerr nonlinearity. Thiswe then varysk between*« so that the SHF lies in one of
is not surprising since in the cascading limix&’ acts as a  three regions RI, RIl, and RIIl, depending on whether it is

x® effect. above, inside, or below its band gap, respectively, where,
Equations(5) have the solutionfl11,13 according to Fig. 1,
p1=— V2K, /INa sinh az), (8) RI:—(kpo+ 279 vg) < Sk<+ o0,
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FIG. 3. The same as Fig. 2, but for RII.

position

) o _ roughly 5 ns for the AlGaAs structures that we are consid-
FIG. 2. Soliton solutions in RI, showingn |*+|&n-|? versus  ering, “against additional, random Gaussian noise with a
position. The short-dashed and long-dashed curves are deep gratigﬂength of 1% of the peak intensity. The noise was applied
results for the FF and SHF, respectively. The solid and doneqndependently to the real and imaginary partsSgf. . This
curves are the same, but in the shallow grating approximation.  jmplies that the solutions are stable. Shallow grating results
were checked independen{l§7]. The stability of solutions
RI+ (k= 2y0lvg) <ok<—(Kky+2y0lvg), (12)  presented below are checked similarly. We note that gap
solitons that occur in gratings with @2 nonlinearity have
RIIl: —oo<8k=+ (k=270 /v). been shown to exhibit oscillatory instabiliti¢48], which
may be difficult to observe using a direct numerical calcula-
For our geometry, the boundaries between RI, RIl, and Rllition.
are aték=+2.3v4 and k= +1.34. Soliton solutions are As 6k decreases the SHF starts to approach the second
shown in Figs. 2 and 3 for Rl and R, respectively, all with band gap atk=2.3v 4 and the peak intensity decreases. This
r=10 %in Eq. (11). No results are shown for Rlll as all are is illustrated in Fig. ), which shows solutions fowk
found to be unstable. =+4.%4. Again, both solutions are stable and the deep
In Fig. 2(a) we havesk= +10Q g4, and the SHF thus lies grating intensity is more than three times smaller than the
far above the second band gap. Note that, apart from thehallow grating result. For smallék, but still in RI, we find
value of the peak intensity, the deep and shallow gratinghat when 3.64=< ok< +, the solutions are similar to Fig.
solutions are very similar. Sincpsk|> «,, we expect the 2, and that all are stable; no soliton solutions are found for
cascading results to apply. According to E(). the peak +2.33<dk<+3.6v4. In the shallow grating approxima-

intensity is tion no solutions are found fof 2.3 < dk<+3.1v4.
Reducingdk further tunes the SHF into the second band
&, [2+]€ |2_2K1+ _ A5KkKy, 13 gap and we enter RII. Figure@® shows solutions fosk=
1+ 1-1"=

Osr - (T'1+T,+205)% +2.2% 4 where the SHF lies just below the upper band edge.
The FF component is single peaked while the SHF compo-
in agreement with the numerical result, from which they cannent has a double peak. In FighB 6=1.3%, so that the
not be distinguished on this scale. Thus the shallow gratingHF is tuned just above the lower band edge. All solutions
treatment underestimates the effect of the nonlinearity, sincehown in Fig. 3 are stable. Singk in this region is small
the nonlinear coefficients ifl3) add. To check stability, the the peak intensities are much lower than in(Rig. 2). We
fully time-dependent CME$EQs. (22) in Ref. [10]] were find again that in RIl the deep grating and shallow grating
solved numerically using a finite difference scherh@]. The  solutions are similar, but that the deep grating solutions
solutions in Figs. &) were found to be robust in at least two again have peak intensities roughly half that for shallow grat-
independent runs of 2500 time units, corresponding tdngs.
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IV. DISCUSSION AND CONCLUSIONS The stability of gap solitons in the cascading limit was
. _ analyzed by Contet al. [7]. They found that all stationary

B Although th_e results in Sec. lll are faryc,=1.0, vgk2  goytions are stable, in contradiction to our findings, accord-
=0.5, and yo=—0.9,, other geometries and detunings jng tq5 which for y=—0.9« and sk<0, all solutions are
were also considered. Here we discuss these cases brieflyastaple. However. we consider the full CMEs. whereas
For yo=+0.% the results are also similar to those in Sec.|imit. We also numerically analyzed the stability in this limit
I1l, except that Rl and RIll are interchanged. More generally,using Egs(5), and find the solutions in RIll to be stable, in

for y<O the trends are similar to those fo=—0., agreement with Contet al. [7]. Apparently the relevant in-
whereas if yo>0 they are similar to those fory,  stability mechanism is dropped in taking the cascading limit.
=+0.%y. In more recent work6] Conti et al. note that in the cascad-

We now consider regime Il. Recall that for shallow grat-ing limit only the solutions forsk>0 are stable, consistent
ings, changing the sign ot, corresponds to changing be- with our findings.
tween regimes | and Il. Since the shallow grating equations In conclusion, we consider localized, bright, stationary

are unchanged under the transformation solitons in deep gratings with a quadratic nonlinearity. By
varying the material dispersion we find solutions for which
Yo— ~ Yo, OK——6K K=Ky, the SHF is tuned above, within and below the second gap.
(14 We can of course not vargk freely. However the relevant
P1—01,  Q1—P1, G2~ ~0G2, P2—P2, parameters in the normalized CMEs a#k/«,,, which, in

effect, can be tuned by varying; and«, [9]. In the cascad-
ing limit analytic solutions to the CMEs are given. Using the
full time-dependent CMEs we checked the stability of all
solutions. We find that results of the deep grating treatment

— +0.9, in regime II. Although(14) is only valid for shal- are similar to those from the shallow grating approximation,

low gratings we find that the results using the deep gratinfxceg]alt th?t ihe ffo;mer :?d'fﬁtesthpeflit mtir;]smei :E.at are
treatment follow the same trend. oughly a factor of = smaller than the latter. Though this can

Almost all previous work in this area applies to shallow be understood quantitatively in the cascading limit, it appears
gratings[4—9]. We did compare our results with previous to hold for a wide range O‘f parameters. For the exa!“p',es
work in this limit, particularly that of Contet al. [6] and given here, t_hat are not optimized In any way, the soliton’s
Peschelet al. [8], and find identical results. Deep grating peak power is around 100 GWi/ent is well "”OWF‘* how-
work includes that of Contét al.,who use a Bloch function EVe' tha_t the power required to launch su.ch.a soliton may be
approach to derive two coupled nonlinear Sclimger equa- substantially lower than the peak power inside the structure

tions[5]. These were shown to support bright solitary Waves[lg]'
with a hyperbolic secant profilgs]. Contiet. al. [6] applied

an approach similar to ours, but they took the shallow grating
limit before calculating the nonlinear coefficients and found This work is supported by the Australian Research Coun-
F2,3: 0 . Cll

solutions obtained in regime | foy, and 5k are the same as
those for regime Il with the FF tuned te y, and — &k.
Thus, soliton solutions calculated fop=+ 0.9 in regime
| are identical to those for the samegx, with vy,
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