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Bright stationary solitary waves in deep gratings with a quadratic nonlinearity
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We present localized, bright, stationary soliton solutions to the coupled-mode equations for quadratically
nonlinear media with adeepgrating. We find that the required peak intensities can be significantly lower than
might be expected from a shallow grating treatment.
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I. INTRODUCTION

Periodic Kerr media are well known to support Bra
solitons, which maintain their shape through the balance
the grating’s group velocity dispersion and the Kerr nonl
earity @1#. It is also well known that in second harmon
generation~SHG!, the up and down conversion between t
fundamental frequency~FF! and the second harmonic fre
quency~SHF!, can lead to a nonlinear phase shift somew
similar to that in Kerr media, but potentially much larg
@2,3#. One would thus expectx (2) media with a periodic
refractive index to support solutions that are similar to Bra
solitons. Indeed, this was confirmed theoretically@4–9#.
Here we theoretically investigate such solitons further, wi
out making the usual assumption that the grating is a w
perturbation.

The usual starting point for studies of gratings with
quadratic nonlinearity is a set of four coupled-mode eq
tions ~CMEs!. For shallow gratings, these are well esta
lished and many solutions are known@5–9#. The CMEs for
deep gratings are also known and include additional non
ear terms@10#, though their solutions were only considere
in limiting cases@5,6#. In this paper we present stationa
soliton solutions forx (2) media with a deep grating. W
compare the results to those for shallow gratings@6–9#, and
show that the peak intensities according to the deep gra
treatment can be significantly lower than might be expec
from the usual method.

II. COUPLED-MODE EQUATIONS

We consider scalar type I SHG in which the FF isv10
1g, wherev10 is the center of the first grating-induced ba
gap. Through thex (2) nonlinearity, this field generates th
SHF near the center of the second band gapv20; because of
dispersion,v2022v10Þ0. Here and below, the subscrip
m51,2, refers to the FF and the SHF or the first and
second band gaps. We restrict ourselves to envelopes va
harmonically in time. According to Arraf and de Sterke@10#
these obey
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E111k1E121G1E11* E21

1G2E11* E221G3E12* E211G3* E12* E2250,

1 iE218 1
2g

v2g
E211dkE211k2E221G1* E11

2

1G2E12
2 12G3* E11E1250, ~1!

where E6 are the envelopes associated with forward a
backward propagation, and the prime (8) indicates differen-
tiation with respect to the propagation directionz. As dis-
cussed below, the evolution equations for theE2 are not
required here. The positive, real constantskm are grating
coupling constants,vmg are the group velocities,dk5k2
22k1, where thekm are the wave numbers at the FF and t
SHF, and the complex nonlinear coefficientsG1 –3 are known
@10#.

The dispersion relation in Fig. 1 is obtained by substit
ing trial plane wave solutions into the linear part of Eqs.~1!,
taking v1g5v2g5vg ~see below!. The first band gap~left-
hand side! is centered atg50, while the second band ga
~right-hand side! is centered atg52vgdk/2. In the linear
limit, an envelopeEm6(z) tuned to a frequency within a ban
gap is evanescent, while otherwise it is oscillatory.

FIG. 1. Schematic of the dispersion relation showing the lo
detuningg/vg versus the local wave numberQ.
©2001 The American Physical Society11-1
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Equations~1! apply to arbitrary periodic refractive index
Henceforth however, we consider refractive indices that
symmetric around the center of each period. TheG ’s in Eqs.
~1! are then either real~regime I! or imaginary~regime II!
but never complex@10#.

In the stationary limit that we consider hereEm25Em1
! ,

and so only two of Eqs.~1! are required. Rather, by writing
@9# Em6(z)5Am/2@pm(z)6 iqm(z)#, wherepm and qm are
real, they reduce to four real equations. This leads t
Hamiltonian system, which in regime I reads

q185K11p11w1p1p21w0q1q2 ,

p185K12q11w2q1p22w0p1q2 ,
~2!

q285K21p21
w1

2
p1

22
w2

2
q1

2 ,

p285K22q22w0p1q1 ,

where thew0,6 are combinations of theG1 –3

w05G12G2 , w65G11G262G3 , ~3!

and whereKm6 are given by

K165k16
g

v1g
, K265k26S dk1

2g

v2g
D . ~4!

Results for regime II are similar. Henceforth we takev1g
5v2g5vg . Note that for GaAs at a fundamental waveleng
of 1.6 mm, v2g /v1g50.92, while for AlAs,v2g /v1g50.93
@12#, so this is a good approximation.

Equations~2! can be solved analytically in the cascadi
limit when the dispersion is large, i.e.,udku@km @4,6#. The
conversion from the FF into the SHF is then inefficient a
p1(z),q1(z)@p2(z),q2(z). In the last two of Eqs.~2! thedk
term @in the K6 in Eqs. ~4!# and the nonlinear terms now
dominate, and thusp252(w1p1

22w2q1
2)/(2dk) and q2

52w0p1q1 /dk, so that the SHF is slaved by the FF. Su
stituting into the first two of Eqs.~2! we find

q185K11p12ws1p1
32ws0q1

2p1 ,
~5!

p185K12q11ws2q1
31ws0q1p1

2 ,

where

ws65w6
2 /~2dk!, ~6!

ws05~2w0
22w1w2!/~2dk!. ~7!

Equations~5! are similar to those of de Sterkeet al. @11#,
who considered deep gratings with a Kerr nonlinearity. T
is not surprising since in the cascading limit ax (2) acts as a
x (3) effect.

Equations~5! have the solutions@11,13#

p152A2K11 /Na sinh~az!, ~8!
02661
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q151A2K12 /Na cosh~az!, ~9!

where

N5ws1K12
2 cosh4~az!12ws0K11K12

3cosh2~az!sinh2~az!1ws2K11
2 sinh4~az! ~10!

with a5(K11K12)1/2 and wheredk.0. Fordk,0 the hy-
perbolic sine and cosine functions interchange.

III. RESULTS

The shallow grating CMEs have two types of bright so
tions @6,7,14#. In the first, both the FF and the SHF are tun
inside their linear band gaps~free tail solutions@14#!. In the
low-intensity wings, therefore, the free envelopes are evan
cent. In the second, the SHF is outside its band gap~locked
tail solutions@14#!. Though the free linear SHF solutions a
thus propagating, the SHF–FF coupling forces the SHF fi
to decay in the wings.

Free tail and locked tail solutions differ in applying initia
conditions@6–9#. We start integrating in one of the solito
wings, on a small hypersphere of radiusr, i.e.,

p1
21q1

212~p2
21q2

2!5r 2, ~11!

where analytic expressions can be found. For locked tail
lutions, the initial conditions are now specified by requirin
that the soliton decays in the other wing. However, for fr
tail solutions, one of the initial conditions is as yet unspe
fied and is found using a shooting method.

The nonlinear parameters used apply to a GaAs–AlA
stack. For wavelengthslFF51.6 mm and lSHF50.8 mm,
the refractive indices aren1GaAs53.37, n1AlAs52.88,
n2GaAs53.67, and n2AlAs53.04 @12#. Following Miller’s
rule, we take thex (2) ratio between AlAs and GaAs to b
0.33 @15#. We usedGaAs/d50.19, wheredGaAs/d is the
GaAs fraction of the period. Treating this grating as if it w
shallow, the Bloch functions are simple trigonometric fun
tions which, using the definitions of theG ’s @10#, leads to
G25G350, and only G15G1

shÞ0. The full deep grating
treatment requires the exact Bloch functions@10#, corre-
sponding to a Fourier series, and which exhibit discontinu
derivatives at the interfaces. Using these Bloch functions,
then similarly find G150.85G1

sh, G250.15G1
sh, and G3

50.17G1
sh. Below we use units in whichG1

sh51. We note
that for dGaAs/d50.19 the difference between the shallo
and deep grating treatments are the most pronounced.

Though the nonlinear coefficients apply to GaAlAs, t
linear coefficients are independent of this geometry. We fi
takevgk151.0, vgk250.5, andg0520.9vg , so that the FF
lies just above the bottom edge of the band gap~see Fig. 1!.
We then varydk between6` so that the SHF lies in one o
three regions RI, RII, and RIII, depending on whether it
above, inside, or below its band gap, respectively, whe
according to Fig. 1,

RI:2~k212g0 /vg!<dk,1`,
1-2
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RII: 1~k222g0 /vg!,dk,2~k212g0 /vg!, ~12!

RIII: 2`,dk<1~k222g0 /vg!.

For our geometry, the boundaries between RI, RII, and R
are atdk512.3vg and dk511.3vg . Soliton solutions are
shown in Figs. 2 and 3 for RI and RII, respectively, all wi
r 51026 in Eq. ~11!. No results are shown for RIII as all ar
found to be unstable.

In Fig. 2~a! we havedk51100vg , and the SHF thus lies
far above the second band gap. Note that, apart from
value of the peak intensity, the deep and shallow grat
solutions are very similar. Sinceudku@km we expect the
cascading results to apply. According to Eqs.~8! the peak
intensity is

uE11u21uE12u25
2K11

ws1
[

4dkK11

~G11G212G3!2 , ~13!

in agreement with the numerical result, from which they ca
not be distinguished on this scale. Thus the shallow gra
treatment underestimates the effect of the nonlinearity, s
the nonlinear coefficients in~13! add. To check stability, the
fully time-dependent CMEs@Eqs. ~22! in Ref. @10## were
solved numerically using a finite difference scheme@16#. The
solutions in Figs. 2~a! were found to be robust in at least tw
independent runs of 2500 time units, corresponding

FIG. 2. Soliton solutions in RI, showinguEm1u21uEm2u2 versus
position. The short-dashed and long-dashed curves are deep g
results for the FF and SHF, respectively. The solid and do
curves are the same, but in the shallow grating approximation.
02661
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roughly 5 ns for the AlGaAs structures that we are cons
ering, against additional, random Gaussian noise with
strength of 1% of the peak intensity. The noise was app
independently to the real and imaginary parts ofEm6 . This
implies that the solutions are stable. Shallow grating res
were checked independently@17#. The stability of solutions
presented below are checked similarly. We note that
solitons that occur in gratings with ax (3) nonlinearity have
been shown to exhibit oscillatory instabilities@18#, which
may be difficult to observe using a direct numerical calcu
tion.

As dk decreases the SHF starts to approach the sec
band gap atdk52.3vg and the peak intensity decreases. Th
is illustrated in Fig. 2~b!, which shows solutions fordk
514.5vg . Again, both solutions are stable and the de
grating intensity is more than three times smaller than
shallow grating result. For smallerdk, but still in RI, we find
that when 3.6vg<dk<1`, the solutions are similar to Fig
2, and that all are stable; no soliton solutions are found
12.3vg<dk<13.6vg . In the shallow grating approxima
tion no solutions are found for12.3vg<dk<13.1vg .

Reducingdk further tunes the SHF into the second ba
gap and we enter RII. Figure 3~a! shows solutions fordk5
12.25vg where the SHF lies just below the upper band ed
The FF component is single peaked while the SHF com
nent has a double peak. In Fig. 3~b!, d51.35vg , so that the
SHF is tuned just above the lower band edge. All solutio
shown in Fig. 3 are stable. Sincedk in this region is small
the peak intensities are much lower than in RI~Fig. 2!. We
find again that in RII the deep grating and shallow grati
solutions are similar, but that the deep grating solutio
again have peak intensities roughly half that for shallow gr
ings.

ting
d

FIG. 3. The same as Fig. 2, but for RII.
1-3
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IV. DISCUSSION AND CONCLUSIONS

Although the results in Sec. III are forvgk151.0, vgk2
50.5, and g0520.9vg , other geometries and detuning
were also considered. Here we discuss these cases br
Results fork2Þk1/2 are broadly similar to those in Sec. II
For g0510.9vg the results are also similar to those in Se
III, except that RI and RIII are interchanged. More genera
for g,0 the trends are similar to those forg0520.9vg ,
whereas if g0.0 they are similar to those forg0
510.9vg .

We now consider regime II. Recall that for shallow gra
ings, changing the sign ofk2 corresponds to changing be
tween regimes I and II. Since the shallow grating equati
are unchanged under the transformation

g0→2g0 , dk→2dk, k2→2k2 ,
~14!

p1→q1 , q1→p1 , q2→2q2 , p2→p2 ,

solutions obtained in regime I forg0 anddk are the same a
those for regime II with the FF tuned to2g0 and 2dk.
Thus, soliton solutions calculated forg0570.9vg in regime
I are identical to those for the samevgkm with g0
560.9vg in regime II. Although~14! is only valid for shal-
low gratings we find that the results using the deep gra
treatment follow the same trend.

Almost all previous work in this area applies to shallo
gratings @4–9#. We did compare our results with previou
work in this limit, particularly that of Contiet al. @6# and
Peschelet al. @8#, and find identical results. Deep gratin
work includes that of Contiet al., who use a Bloch function
approach to derive two coupled nonlinear Schro¨dinger equa-
tions @5#. These were shown to support bright solitary wav
with a hyperbolic secant profile@5#. Conti et. al. @6# applied
an approach similar to ours, but they took the shallow grat
limit before calculating the nonlinear coefficients and fou
G2,350.
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The stability of gap solitons in the cascading limit w
analyzed by Contiet al. @7#. They found that all stationary
solutions are stable, in contradiction to our findings, acco
ing to which for g520.9k and dk,0, all solutions are
unstable. However, we consider the full CMEs, where
Conti et al. @7# used the modified CMEs in the cascadin
limit. We also numerically analyzed the stability in this lim
using Eqs.~5!, and find the solutions in RIII to be stable, i
agreement with Contiet al. @7#. Apparently the relevant in-
stability mechanism is dropped in taking the cascading lim
In more recent work@6# Conti et al. note that in the cascad
ing limit only the solutions fordk.0 are stable, consisten
with our findings.

In conclusion, we consider localized, bright, stationa
solitons in deep gratings with a quadratic nonlinearity.
varying the material dispersion we find solutions for whi
the SHF is tuned above, within and below the second g
We can of course not varydk freely. However the relevan
parameters in the normalized CMEs aredk/km , which, in
effect, can be tuned by varyingk1 andk2 @9#. In the cascad-
ing limit analytic solutions to the CMEs are given. Using th
full time-dependent CMEs we checked the stability of
solutions. We find that results of the deep grating treatm
are similar to those from the shallow grating approximatio
except that the former indicates peak intensities that
roughly a factor of 2 smaller than the latter. Though this c
be understood quantitatively in the cascading limit, it appe
to hold for a wide range of parameters. For the examp
given here, that are not optimized in any way, the solito
peak power is around 100 GW/cm2. It is well known, how-
ever, that the power required to launch such a soliton may
substantially lower than the peak power inside the struct
@19#.
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